Organizational management and cognitive privacy: ethical challenges in the use of data for business decision-making
Keywords:
organizational neuromanagement, neurodata, cognitive privacy, applied neuroethics, organizational intelligenceAbstract
Introduction Organizational neuromanagement emerges as a field that integrates neuroscientific knowledge and cognitive analysis to understand decisive processes of work behavior, creativity, and performance. The growing use of technologies based on neurodata and artificial intelligence models makes it possible to anticipate cognitive patterns, manage risks and support strategic decision-making; however, it also poses ethical risks linked to mental privacy, personal autonomy and protection of cognitive integrity. In this context, it is necessary to evaluate how workers from different fields perceive the incorporation of neurotechnologies in business environments and the risks associated with their possible use. Method A quantitative, non-experimental and cross-sectional study was applied, with a descriptive-correlational scope. 120 workers from areas related to management, innovation and administration participated. A structured questionnaire of 28 Likert items (α = .89) was used, designed to measure neuromanagement practices, acceptance of technologies that collect neurodata, and perception of cognitive privacy. Results Neuromanagement practices are moderately average, while the acceptance of neurocognitive technologies is initial but prudent. The perception of ethical risks and cognitive privacy reaches high levels, evidencing sensitivity to a possible violation of internal thinking. Significant differences were observed between work areas and positive correlations between technological familiarity and greater acceptance. Conclusions Organizational neuromanagement is advancing as an emerging practice, but its ethical adoption will depend on neurodata protection frameworks, institutional transparency, and guidelines that guarantee the mental autonomy of workers.
References
Beugré, C. D. (2009). Exploring the neural basis of fairness: A model of neuro-organizational justice. Organizational Behavior and Human Decision Processes, 110(2), 129–139. https://doi.org/10.1016/j.obhdp.2009.06.005
Berger, S. E., & Rossi, F. (2022). Addressing neuroethics issues in practice: Lessons learnt by tech companies in AI ethics. Neuron, 110(13), 2052–2056. https://doi.org/10.1016/j.neuron.2022.05.006
Budak, O., & Filiz, M. (2024). El papel moderador de la experiencia laboral en el efecto de la cultura ética en la denuncia de irregularidades. Enfermería Clínica, 34(5), 357–368. https://doi.org/10.1016/j.enfcli.2024.01.005
Chander, G. P., & Das, S. (2024). Chaotic Rao3 based adaptive neuro-fuzzy inference system to solve global infrastructure project selection problem. Applied Soft Computing, 165, 112046. https://doi.org/10.1016/j.asoc.2024.112046
Chitte, P. H., & Chaudhari, S. S. (2025). An improved deep neuro-fuzzy and bi-directional gated recurrent unit model for DDoS attack detection. Decision Analytics Journal, 16, 100608. https://doi.org/10.1016/j.dajour.2025.100608
Dasgupta, S., & Gupta, B. (2019). Espoused organizational culture values as antecedents of internet technology adoption in an emerging economy. Information & Management, 56(6), 103142. https://doi.org/10.1016/j.im.2019.01.004
Domecq, S., Canete, S., Sevin, F., Lesaine, E., & Saillour, F. (2025). Optimisation du fonctionnement des Registres Cardio-Neuro-Vasculaires. Journal of Epidemiology and Population Health, 73, 202873. https://doi.org/10.1016/j.jeph.2025.202873
Eke, D. (2024). Ethics and governance of neurotechnology in Africa: Lessons from AI. JMIR Neurotechnology, 3, e56665. https://doi.org/10.2196/56665
Eke, D., Aasebø, I. E. J., Akintoye, S., Knight, W., Karakasidis, A., Mikulan, E., ... Zehl, L. (2021). Pseudonymisation of neuroimages and data protection. NeuroImage: Reports, 1(4), 100053. https://doi.org/10.1016/j.ynirp.2021.100053
Hernández Palomino, J. A., Espinoza Medina, J. J., & Aguilar Arellano, M. (2016). Diferencias en los motivadores y los valores en el trabajo de empleados en empresas maquiladoras. Contaduría y Administración, 61(1), 58–83. https://doi.org/10.1016/j.cya.2015.09.003
Hilken, T., Chylinski, M., de Ruyter, K., Heller, J., & Keeling, D. I. (2022). Exploring the frontiers in reality-enhanced service communication. Journal of Service Management, 33, 657–674. https://doi.org/10.1108/JOSM-11-2021-0439
Ienca, M., & Andorno, R. (2017). Towards new human rights in the age of neuroscience and neurotechnology. Life Sciences, Society and Policy, 13(1), 5. https://doi.org/10.1186/s40504-017-0050-1
Karwowska, E., & Majewski, P. (2025). Teal and neurodiverse organisations: Leveraging teal management practices to foster workplace neurodiversity. Employee Relations, 47(9), 99–121. https://doi.org/10.1108/ER-12-2024-0731
Li, M., Liu, H., Yan, M., Guo, B., Wu, J., Jiang, G., & Fu, X. (2025). Traffic scenario frozen callback and adaptive neuro-fuzzy inference system based energy management strategy for connected fuel cell buses. Applied Energy, 387, 125605. https://doi.org/10.1016/j.apenergy.2025.125605
Mandava, V., Rokem, A., Cristea, N., Tambay, A., Bouchard, K., Berys-Gonzalez, C., & Connolly, A. (2025). Open-source models for development of data and metadata standards. Patterns, 6(7), 101316. https://doi.org/10.1016/j.patter.2025.101316
Meynen, G., Van de Pol, N., Tesink, V., & Ligthart, S. (2023). Neurotechnology to reduce recidivism: Ethical and legal challenges. In Handbook of Clinical Neurology (Vol. 197, pp. 265–276). Elsevier. https://doi.org/10.1016/B978-0-12-821375-9.00006-2
Olusanya, O. O., Jimoh, R. G., Misra, S., & Awotunde, J. B. (2024). A neuro-fuzzy security risk assessment system for software development life cycle. Heliyon, 10(13), e33495. https://doi.org/10.1016/j.heliyon.2024.e33495
Platon, A., Nummela, M. T., Teisen, H., Dormagen, J. B., Bensch, F., Thoren, F., ... Poletti, P.-A. (2026). Emergency radiology: Organizational models in Swiss and Nordic hospitals. European Journal of Radiology, 194, 112528. https://doi.org/10.1016/j.ejrad.2025.112528
Radfar, S., Koosha, H., Gholami, A., & Amindoust, A. (2025). A neuro-fuzzy and deep learning framework for accurate public transport demand forecasting. Journal of Transport Geography, 126, 102417. https://doi.org/10.1016/j.jtrangeo.2025.102417
Reimer, M. L., Bangalore, L., Waxman, S. G., & Tan, A. M. (2021). Core principles for the implementation of the Neurodata Without Borders data standard. Journal of Neuroscience Methods, 348, 108972. https://doi.org/10.1016/j.jneumeth.2020.108972
Saleeshya, P. G., & Binu, M. (2018). A neuro-fuzzy hybrid model for assessing leanness of manufacturing systems. International Journal of Lean Six Sigma, 10(1), 473–499. https://doi.org/10.1108/IJLSS-05-2017-0040
Shvetcov, A. (2017). Models of neuro-fuzzy agents in intelligent environments. Procedia Computer Science, 103, 135–141. https://doi.org/10.1016/j.procs.2017.01.029
Sodeify, R., & Habibpour, Z. (2021). Percepciones de las enfermeras sobre el apoyo de los compañeros de trabajo: Investigación cualitativa. Enfermería Clínica, 31(6), 355–362. https://doi.org/10.1016/j.enfcle.2020.04.003
Yeo, G. B., Celestine, N. A., Parker, S. K., To, M. L. T., & Hirst, G. (2024). A neurocognitive framework of attention and creativity: Maximizing usefulness and novelty via directed and undirected pathways. Journal of Organizational Behavior. https://doi.org/10.1002/job.2787
Yuste, R., Goering, S., Agüera y Arcas, B., Bi, G., Carmena, J. M., Carter, A., ... Wolpaw, J. (2017). Four ethical priorities for neurotechnologies and AI. Nature, 551(7679), 159–163. https://doi.org/10.1038/551159a
Published
Issue
Section
License
Copyright (c) 2026 Ricardo Perez Solis (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.